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Preface to second edition 

A Teaching Challenge: 

How to Teach Quantum Mechanics Fully with Engineering Mechanics 

•Motivation 

With advances in material synthesis and device processing capabilities, the importance of 
quantum mechanics in applied disciplines, such as material science, electrical engineering and 
applied physics, has dramatically increased over the last couple of decades. The engineers can no 
longer just work with simplistic phenomenological equations, but must understand a more 
fundamental origin of the phenomena. Devices such as Josephson junctions, semiconductor lasers, 
transistors, and all of the nanostructures cannot be fully understood in terms of simple classical 
mechanics. However, the current engineering education, especially undergraduate, in NCKU like 
most of the universities in the world still focuses on classical mechanics that applies conventional 
Newtonian approaches to solve static and dynamic problems appearing in the macroscopic world. 
Since its foundation, NCKU is very proud of its engineering education. To continue this excellent 
tradition toward the coming era of nanotechnology and biotechnology, and to become one of the 
world leading universities in engineering research and education, our engineering education has to 
incorporate the fresh elements from quantum mechanics into the current teaching in engineering 
mechanics.  

•Challenge 

The big challenge does not stem from our ignorance of the importance of nourishing 
engineering education with quantum elements, but from the seemingly insurmountable task of 
teaching quantum mechanical concept in a class of engineering mechanics. The fundamental ideas of 
quantum mechanics and engineering mechanics are so conflicting that all the deterministic rules and 
causal trajectories found in engineering mechanics are totally invalid in quantum mechanics, which 
treats physical quantities as random variables having only probabilistic nature. Some lecturers of 
quantum mechanics even suggest students to temporarily forget the impressions of determinism and 
causality gained from classical mechanics, when studying quantum mechanics. Furthermore, 
because quantum mechanics does not possess equations of dynamics, when one learns quantum 
mechanics, one has to develop one’s own personal sense or picture to interpret the theory. On the 
other hand, in engineering mechanics the equations of motion can be derived from either Newton 
formulation or Hamilton formulation or Lagrange formulation. It is safe to say that the lack of 
equations of motion has been the primary source of controversies about the interpretations of 
quantum mechanics, although it has the equation of propagation of probability, i.e., the 
Schrodinger��  equation. Accordingly, it seems that the knowledge and experience gained from 
studying engineering mechanics cannot be conveyed directly to the study of quantum mechanics. 
These remarkable gaps between quantum mechanics and engineering mechanics have forbidden the 
possibility to teach quantum mechanics in a course in engineering mechanics.  

•Aim 

The aim of this lecture is to surmount the mentioned obstacles and to propose a teaching 
program called engineering quantum mechanics which unifies the education of engineering 
mechanics and quantum mechanics. The theoretical background of the proposed teaching program 
is based on my recent progress in developing a new theory of quantum mechanics called complex 
quantum Hamilton mechanics (or complex mechanics, by short). Within the framework of this new 
formulation, the equations of motion compatible with the Schrodinger��  equation are proved to be 
the classical Hamilton equations extended to a complex domain. By employing the complex-
extended Hamilton equations or the equivalent Newton equations, there will be no ambiguity at all 
in understanding the motion of quantum particles; in other words, we no longer need the so-called 
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“interpretation”. Everything becomes transparent and every quantum mechanical problems can be 
solved by the well-established methods in the classical mechanics. From the point of view of 
complex mechanics, undergraduate students finishing the courses of engineering mechanics and 
engineering mathematics have already gathered all the required ability and tools to learn quantum 
mechanics. In the following, the fundamentals of complex mechanics will be introduced first, and 
then used to construct the main structure of engineering quantum mechanics. 

•Literature Survey 

The necessity of analyzing quantum 
phenomena in terms of complex 
trajectories and complex potentials has 
long been recognized in many branches of 
quantum physics. It was known that the 
solution of the Schrodinger��  equation 
could be expressed in terms of complex 
classical paths out of which wave behavior 
can be constructed [1]. The studies in 
chaotic tunneling have also revealed that 
only by including complex trajectories, can the tunneling effect of transition to classically 
inaccessible regions be fully explained [2]. Especially, the complex trajectories having no connection 
with the real manifold, called Laputa branches, play a crucial role to generate chaotic tunneling. As 
regard to tunneling time, a traversal time can be unambiguously defined as the time spent by a 
particle between given initial and final positions, moving according to complex trajectories with 
complex-valued position and momentum [3]. Besides tunneling problems, complex trajectory also 
has successful applications in scattering problems. A highly accurate approximation of quantum 
scattering by a hard sphere, valid for complete range of scattering angles, has been proposed using 
complex-valued angular momentum [4]. 

A primary motivation of extending standard quantum mechanics to complex domain is the 
studies of Hamiltonians with complex-valued potentials, which appeared firstly in nuclear physics, 
and is called optical or average nuclear potentials [5]. Quantum analysis using complex Hamiltonian 
is not only a mathematical tool but also has concrete physical realization. For example, a 
delocalization phenomenon was found for a non-Hermite Hamiltonian containing a constant 
imaginary vector potential [6]. As the imaginary vector potential increases, all of originally localized 
eigenfunctions get delocalized one by one. This delocalization phenomenon caused by complex 
potential has a physical realization as flux-line depining in type-II superconductors [7].  

Hamiltonian with complex potential has complex eigenfunctions and is non-Hermitian in 
general, which, at first glance, does not satisfy the Hermitian property, required by the standard 
quantum mechanics to ensure the reality of energy spectrum. However, the researches of complex 
potentials have proved the fact that Hermiticity of the Hamiltonian is not essential for a real 
spectrum. Replacing the Hermiticity condition by a weaker condition called PT symmetry [8], one 
can obtain new classes of complex Hamiltonians whose spectra are still real and positive. 

The relations of Schrodinger��  equation to particle’s motion in complex space have been pointed 
out by several authors. The first relation comes from a recent discovery about a new interpretation 
of Schrodinger��  and Klein-Gordon equations [9], wherein conservation of probability is replaced 
with conservation of energy in complex domain. The other relation of Schrodinger��  equation to 
particle’s complex motion stems from the Nelson’s derivation of the Schrodinger��  equation from 
Newtonian Mechanics [10]. Nelson showed that an entirely Newtonian derivation of the 
Schrodinger��  equation could be given by considering Brownian motion with diffusion coefficient 

/ m= 2�D . The most remarkable existing work on complex motion is Nottale’s theory of scale 
relativity [11]. Scale relativity leads naturally to the concept of fractal space-time, which describes 
quantum space-time as a non-differentiable fractal continuum. Nottale’s fractal hypothesis gives rise 
to the enlightening result that the Nelson’s Brownian approach to quantum mechanics can be 
simply reproduced by replacing the classical time-derivative in Newtonian mechanics by a new 
complex derivative. The resulting complex Newtonian equation is shown to be exactly identical to 
theSchrodinger�� ’s equation. 
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Fig.1 Complex mechanics is an interface between 
Newton mechanics and quantum mechanics. 
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The above-related researches in classical and quantum mechanics in complex domain provide 
us with good reason to consider seriously the possibility that actual particle motion happens in 
complex space, but what we have sensed and measured is only the real part of the motion, which 
constitutes the real physical world that we experience in daily life. Accordingly, the establishment of 
complex mechanics proposed here is based on such a postulate that the actual scenario of dynamic 
motion happens in complex space and what we customarily consider as physical reality is merely 
the projection of the actual scenario into the real space. Within complex domain, we will find that 
classical mechanics and quantum mechanics can be made compatible with each other and can be 
further incorporated into a unified framework - called complex mechanics here. 

•Complex Mechanics 

Classical mechanics and quantum 
mechanics were developed according to 
totally different philosophy, but rigorous 
proof shows that they are equivalent 
theories when viewed from complex 
domain. Complex mechanics is the 
consequence of such equivalence. Complex mechanics [12] is a new formulation of quantum 
mechanics, whose main idea is to extend all the physical quantities, such as position, momentum, 
angular momentum, force, and energy, etc., to a complex domain so as to develop complex-
extended Newton mechanics, complex-extended Hamilton mechanics, and complex-extended 
relativistic mechanics. When we are dealing with the complex-extended Newton mechanics, we 
naturally arrive at the Schrodinger��  equation in quantum mechanics; when we are dealing with the 
complex-extended relativistic equations we naturally obtain the Dirac equation in relativistic 
quantum mechanics. Under the structure of complex space, the uncertainty in quantum mechanics 
disappears automatically. The resulting determinism then allows us to integrate quantum mechanics, 
classical mechanics, and relativistic mechanics in the same framework. Fig.1 illustrates the main 
feature of complex mechanics as an interface with input from Newton mechanics (classical 
mechanics) and output to quantum mechanics via the transformation machine – complex variable 
theory. 

Because real space is a subset of complex space, physical laws developed within real space 
remain valid in complex space. Extending physical laws into a complex domain can widen their 
validity and explain what cannot be explained in the real space. As Feynman said, quantum 
mechanics tells us how to compute the motion of a particle but does not tells us the whys to do so. 
Complex mechanics is just developed to answer the whys that cannot be answered by quantum 
mechanics. Considering the following problems: 

(a) Why does a material particle exhibit wave motion? 
(b) Why dose a quantum particle have multiple paths? 
(c) Why is probability interpretation unavoidable? 
(d) Why must physical quantities in quantum mechanics be defined in terms of their 

Fig.2 The assumption of complex mechanics. 

Fig.3 Quantum mechanics can be reformulated by the 
Newton second law defined in a complex plane wherein 
a particle is subjected to a complex force and is 
described by complex coordinate. 
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accompanying operators? 
I have proved that all of them are originated from the particle’s motion in complex space. Since 
standard quantum mechanics is defined in real space, it is not surprising that quantum mechanics 
could not explain the above problems that are caused by particle’s motion in complex space.  

Complex mechanics is dedicated to the development of a general theory unifying classical 
mechanics, quantum mechanics, and relativistic mechanics in complex space, and to the conveyance 
of the philosophy that what have been considered as probabilistic quantum events have a common 
origin from the particle’s deterministic motion in complex space. We postulate that the actual 
scenario of dynamic motion happens in complex space [13] and what we customarily consider as 
physical reality is merely the projection of the actual scenario into the real space (refer to Fig.2). 
The proposed theory employs complex-extended classical mechanics to describe and model quantum 
systems in such a way that all the particle-like properties can be reserved due to its classical nature 
and in the meanwhile, all the wave-like properties are manifested naturally via the multi-path 
behavior of complex trajectories [14].  

•Complex Newton Law 

The proposed framework of 
complex mechanics makes use of 
classical concepts and tools to 
deal with particle’s quantum 
behavior by the introduction of a 
complex Hamiltonian from which 
complex Hamilton equations 
describing particle’s quantum 
motion are derived in a form of 
Newton’s second law defined in 
complex space as shown in Fig.3. 
Distinct from classical Newton 
second law, the complex Newton 
law relates complex acceleration 
to complex force and thus 
describes a particle’s motion in 
the complex plane.  

The complex force appeared 
in Fig.3 contains the classical 
force /dV dx−  and the quantum 
force /dQ dx− , where Q  is the 
complex potential determined 
from the wavefunction ( )xψ  which is a solution of the Schrodinger��  equation. Once ψ  is given, we 
then can find the particle’s motion by solving the complex Newton equation as shown in Fig.3.  

Fig.4 illustrates the procedures for finding the complex potential ( ( ))Q xψ  from the 
Schrodinger��  equation. The underlying principle is the equivalence between the Schrodinger��  
equation and the quantum Hamilton-Jacobi equation. From the derived quantum Hamiltonian H , 
we find that the total energy of a quantum system contains the complex potential Q  in addition to 
the kinetic energy /p m2

2  and the applied potential V . It is the action of the complex potential Q  
that produces the observed quantum phenomena. Substituting the computed Q  into the complex 
Newton equation described in Fig.3, we can find the particle’s motion ( )x t  by integration. 

•Comparisons 

Fig.5 gives a comparison of the fundamental principles between quantum mechanics and 
complex mechanics. Quantum mechanics had been established from the following two postulates:  
(1) Postulate of correspondence: to any self-consistent and well-defined observables A , there 

corresponds an operator �A . 
(2) Postulate of quantization: The operator �A  corresponds to the observable A( , )q p  can be 

constructed by replacing the coordinate q  and momentum p  in the expression for A  by the 

Fig.4 The equivalence between the Schrodinger��  equation and 
the quantum Hamilton-Jacobi equation, showing that the 
complex potential Q  is determined from a solution ψ  of the 
Schrodinger��  equation. 
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assigned operators → =�q q q  and � i→ =− ∇�p p .  
The validity of the two 
postulates was justified indirectly 
via the voluminous precise 
predictions of quantum 
mechanics. Although the two 
postulates work very successfully, 
until now we still do not know 
why they should work and a 
formal proof of their origin still 
lacks. We also do not know very 
clearly about the underlying 
reason that to obtain the correct 
operators in coordinate system 
other than Cartesian coordinates, 
it is always necessary to 
transform A( , )q p  into Cartesian 
coordinates before putting in the 
operators. I have proved the 
above two postulates by using 
complex mechanics [12,15] and 
also expounded the reason why 
the postulate of quantization is only true in the Cartesian coordinates. It can be seen from Fig.5 
that in complex mechanics we can find the position ( )x t   and momentum ( )p t  in the quantum state 

nψ  as a function of time t , while in quantum mechanics only the mean values x  and p  can be 
obtained. In other words, given a wavefunction ψ , we can determine not only the probability 
density ψ ψ∗  but also a dynamic representation for ψ  as shown in Fig.5, from which dynamic 
responses ( )x t  and ( )p t  can be found. 

I have applied complex mechanics to solve many quantum problems by using common methods 
in engineering mechanics with very promising results. The following summarizes some of them: 
(1) Relate complex variables to their accompanying quantum operators and show every quantum 

operator appeared in quantum mechanics can be explicitly represented by its associated 
complex variable [12,15]. 

(2) Explain and solve quantum tunneling problem by complex Newton equation [16]. 
(3) Formulate and solve quantum motions in diatomic molecules by  complex Newton equation 

[17,18]. 
(4) Demonstrate how a material particle can produce wave motion and why it traces multiple 

paths [14,19]. 
(5) Prove that the shell structure found in the hydrogen atom is due to the action of the complex 

quantum potential Q  [20]. 
(6) Prove the noticeable fact that the electron spin is actually induced by its motion in complex 

space [21,22]. 
(7) Compute the quantum scattering trajectories of an electron incident on a proton by complex 

Newton equation [23]. 
(8) Analyze quantum transition behavior by complex Newton second law [24]. 
The above successful demonstrations of solving quantum problems by classical methods will form a 
solid foundation for the course of engineering quantum mechanics to be introduced below. 

•Teaching Plan 

Complex mechanics shortens the gap between quantum mechanics and engineering mechanics 
and makes the teaching and learning of quantum mechanics easier. The incorporation of complex 
mechanics into the current engineering education in NCKU would be very helpful to our students, 
making them more powerful in handling problems relating to nanotechnology and biotechnology. 
The proposed teaching program has been tested in the course named “Engineering Quantum 
Mechanics” in the Institute of Aeronautics and Astronautics at the semester year from 2006 to 2007. 

Fig.5 The comparison between quantum mechanics and complex 



 vi 

The preliminary validation of the idea of teaching quantum mechanics fully with engineering 
mechanics is very successful in this course. Students enrolled in this course have been benefited 
greatly from the bridge provided by complex mechanics that allows them to accelerate and deepen 
the learning of quantum mechanics by their previous knowledge and experience gained from the 
course of engineering mechanics. Teaching experience learned from this preliminary course further 
improves the teaching plan for the next semester. Following is the proposed teaching plan for the 
coming semester.  

Lectur

e No. 

Schedule 

(3hr/week) 
Topics 

1 1st week 
Review of Newton, Lagrange, and Hamilton formulations of classical 
mechanics. 

2 2nd week Review of complex variable theory. 

3 3rd week 
Overview of quantum mechanics: quantum operator and eigenvalue 

problems 

4 4th week Fundamentals of complex mechanics 

5 5th week Relate a complex variable to its accompanying quantum operator 

6 6th week Solve quantum harmonic oscillator by complex Newton second law 

7 7th week Produce wave-particle duality by particle’s motion in complex plane 

8 8th week 
Describe quantum vibrational dynamics in diatomic molecules by 
complex Newton laws 

9 9th ~10th week Describe tunneling dynamics by complex mechanics 

10 11th week Generate Feynman’s multiple paths by complex Newton equations. 

11 12th week Define orbital and spin angular momentum in a engineering sense 

12 13th ~14th week 
Solve electronic quantum motions in hydrogen atom by Hamilton 
equations of motion 

13 15th week 
Compute quantum scattering trajectory of an electron incident on a 
proton by Hamilton equations of motion. 

14 16th week Quantum dynamics in electromagnetic fields. 

15 17th ~18th week Electronic quantum motions in quantum wires and quantum dots. 

•Anticipated Contributions 

The success of the preliminary teaching experiment gave me the confidence that every student 
with engineering background in NCKU can familiarize himself with quantum mechanics fully by 
their previous learning experience, if lecturers of engineering mechanics would take 3~6 hours in 
their courses to introduce the interface with quantum mechanics via the introduction of engineering 
quantum mechanics. NCKU will be the first university in the world to claim the unification of 
quantum mechanics and engineering mechanics in its engineering education. With the execution of 
this project, I want to share the delight of teaching engineering quantum mechanics with my 
colleagues in NCKU and to promote the usefulness of engineering quantum mechanics in the 
modern engineering education in NCKU and other universities in the world. The outcome of this 
project will be a deliberately prepared and practically tested lecture note (with length about 500 
typing pages), which, I think, has the potential to become a leading textbook in the field of modern 
engineering education. 
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