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Quantum mechanics had been established from the following two postulates:
(1) Postulate of correspondence: to any self-consistent and well-defined observables A, there
corresponds an operator A. R
(2) Postulate of quantization: The operator A corresponds to the observable A(g,p) can be
constructed by replacing the coordinate ¢ and momentum p in the expression for A by the
assigned operators ¢ - §=¢ and p — p = —ihV.
The validity of the two postulates was justified indirectly via the voluminous precise predictions of
quantum mechanics. Although the two postulates work very successfully, until now, we still do not
know why they should work and a formal proof of their origin still lacks. We also do not know very
clearly about the underlying reason that to obtain the correct operators in coordinate system other
than Cartesian coordinates, it is always necessary to transform A(g, p) into Cartesian coordinates
before putting in the operators. This chapter aims to prove the two postulates by the first principle of
Hamilton mechanics, to expound the reason why the postulate of quantization is only true in the
Cartesian coordinates, to demonstrate how to obtain directly quantum operators in spherical
coordinates without transforming back to Cartesian coordinates..

3.1 Quantum Hamilton Mechanics

The main idea of the complex mechanics is based on the equivalence between a complex
observable A(g, p) in Hamilton mechanics and its associated operator A in quantum mechanics,
where (q,p) are canonical variables defined in complex domain. Based on this equivalence and the
requirement that the behavior of A(g, p) must obey Hamilton equations, we can determine the
expression and the various quantization properties of A directly from Hamilton equations of motion,
regardless of the coordinate system being used. The Hamilton equations considered here are derived
from a quantum Hamiltonian H , which is different from the classical one. To find out the correct
quantum Hamiltonian, we first recall a classical result that for a given classical Hamiltonian
H.(t,q, p), the classical Hamilton-Jacobi (H-J) equation reads

0S5,
ot +Hc(taqap)|p:vs(‘ = O; (311)
where S, is the classical action function. We may regard the classical H-J equation as the short

wavelength limit of Schrodinger equation (Goldstein, 1980):

L O [
Wl = -V 4+ Vo, 3.1.2
ih > o VU VY (3.1.2)
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as can be seen via the following transformation

¥ =exp(iS/h), (3.1.3)
from which Schrodinger equation becomes
8_S+[L(vg)2 +V]_iv2g. (3.1.4)
ot 12m 2m

We recognize the quantity in brackets as the classical Hamiltonian for a single particle described in
Cartesian coordinates. Eq.(3.1.4) is known as the quantum H-J equation, which reduces to the
classical H-J equation (3.1.1) if the right-hand side of Eq.(3.1.4) is negligible, which means that the
wavelength of the matter wave is so short that the momentum changes by a negligible fraction over a
distance of wavelength (Goldstein, 1980). The transformation (3.1.3) was first introduced by
Schrédinger in transforming the phase function ¢ =S /h governed by Fresnel’s wave equation to
the wavefunction 1 governed by Schrodinger ’s wave equation.

If we treat Eq.(3.1.4) as the quantum-mechanical counterpart of the classical H-J equation (3.1.1),
it is natural to ask what will be the corresponding quantum-mechanical counterpart of the classical
Hamiltonian H,. Rewriting Eq.(3.1.4) in a form analogous to Eq.(3.1.1):

o)
5 THY P, vs =0, (3.1.5)
we obtain the desired quantum Hamiltonian H , compatible with Schrodinger equation, as
1
H($) = o—p" + V(@) + Q¥(g). (3.1.6)
where () is known as quantum potential defined by
h h K
Q(q) =—V-p=—V=——V’Ini(q). (3.1.7)
2mi 2mi 2m

The usage of the notation H(vy) is to emphasize the state-dependent nature of the quantum
Hamiltonian H . The classical Hamiltonian H, depends only on the externally applied potential
V(q), whereas the quantum Hamiltonian H(v)) dependson V(q) as well as on the internal state
where the particle lies. For a given state described by (q) , the quantum Hamiltonian H () defined
in Eq.(3.1.6) is an explicit function of the canonical variables ¢ and p that are regarded as
independent variables. There are two roles played by the wavefunction ¢ in the quantum
Hamiltonian H . Firstly, as indicated in Eq.(3.1.5), it determines the canonical momentum p;
according to

p, =95 _ _j0lnv (3.1.8)
dg; d4;

Secondly, it generates the quantum potential ¢ according to Eq.(3.1.7). The equations of motion for

a particle moving in the quantum state ¢ are derived by applying the quantum Hamiltonian H to

the Hamilton equations

dg _9H() _ 1

-~ p, 3.1.9
dt ap m P ( )

dp OH () 0 o,

ef _ ) T (g - ==V . 3.1.9b

7 o o (9) o n1(q) ( )

Note that as in classical Hamilton mechanics, we have obtained 0H /dp and OH /dq by treating
q and p as independent variables in the Hamiltonian H in Eq.(3.1.6). The Hamilton equations
(3.1.9) are distinct from the classical ones in two aspects: the complex nature and the state-dependent
nature. The complex nature is a consequence of the fact that the canonical variables (g, p) solved
from Eq.(3.1.8) and Eqs.(3.1.9) are, in general, complex variables. The state-dependent nature means
that the Hamilton equations of motion (3.1.9) govern the quantum motion exclusively in the specific
quantum state described by . We will show in the subsequent sections and chapters that all the
quantum operators and the various quantum effects can be derived from the complex canonical
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momentum in Eq.(3.1.8) and from the complex-extended Hamilton equations of motion in
Egs.(3.1.9).

In the next section, we first discuss the meanings of a wavefunction in Hamilton mechanics by
pointing out that each wavefunction 1 represents a dynamic system described by Eqs.(3.1.9). Hence,
information contained in 1 can be extracted from the dynamic system (3.1.9) using methods
developed in analytical mechanics. Section 2.3 establishes the relationship between a complex
observable A(g, p) in Hamilton mechanics and its associated operator A in quantum mechanics.
This relationship allows us to derive any operator A from its counterpart complex function A(q, p)
in Hamilton mechanics and to express the commutator [4,B] in terms of the Poisson bracket {4, B}
in Hamilton mechanics. Hamilton equations of motion (3.1.9) are valid only for Cartesian coordinates.
In Section 2.4, we derive quantum operators and Hamilton equations of motion in spherical
coordinates, based on which we will allow us to solve quantum central-force problems, such as the
electron motion in hydrogen atom, in Chapter 9. Quantum operators expressed in general curvilinear
coordinates and in the presence of electromagnetic field are derived from the Hamilton equations of
motion in chapter 12.

3.2 Dynamical Representation of Quantum State

In the framework of quantum Hamilton mechanics, a wavefunction ) is not merely an abstract
function in an infinite-dimensional vector space; it also represents a concrete dynamic system.

Definition 3.2.1

The quantum state assigned by a wavefunction @ is a dynamic system whose phase-space
trajectory (q(t), p(t)) obeys the Hamilton equations (3.1.9) with the Hamiltonian H given by
Eq.(3.1.6). 0

According to this definition, when we say that a quantum observable A(g, p) is evaluated in the
state 1y, it actually means that A(g, p) is evaluated along a phase-space trajectory (q(t), p(t))
determined from Eqs.(3.1.9) with H specified by 1,. On solving (q(t), p(t)) from Egs.(3.1.9), it
can be shown as in the following theorem that the solution for p is already given by Eq.(3.1.8); that
is to say, the solution of Schrédinger equation, 1, provides the first integration of the Hamilton
equations (3.1.9).

Theorem 3.2.1.

For a given solution ¢ of Schrodinger equation, the quantum momentum p determined
from Eq.(3.1.8) and the quantum potential Q(¢)(q)) determined from Eq.(3.1.7), satisfy
automatically the quantum Newton equation (3.1.9b), i.e.,

== — T (V+Q). (3.2.1)

Proof: We shall start with Eq.(3.1.5) and show that it leads directly to Eq.(3.1.9b). The total
differentiation of Eq.(3.1.5) with respect to the Cartesian coordinates ¢ = (¢1,¢, --,qy) reads
i[@juﬂ]—o, i=1,2 - N, (3.2.2)
dg; \ Ot
where with S = S(t,q), we have d(0S/0t)/dq, = 0°S /Dq,0t, while with H = H(t,q, p(q)), we
have
N
dH _oH OH Op , (3.2.3)
dgi  0q; “= Ip Oq
with p;, given by Eq.(3.1.8) as p, = 05/ 9q;. Assuming that S is twice continuously differentiable
with respect to g, we may rewrite dp, /9¢; as

Ope _ 0 05 _ 0 05 _ Op
dq;  0q 0qp  0q q;  Oqn
Inserting the above identity and Eq.(3.1.9a) into Eq.(3.2.3) yields
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dH OH <~ 0p,
Y

dg;  Og; 9g. "
from which Eq.(3.2.2) becomes
3p7 3pz
—|— e
E GQk aq7
This is just Eq.(3.1.9b) by noting that the left—hand side is equal to dp; / dt , the total differentiation
of p; with respect to time ¢. O

The inverse of Theorem 3.2.1 is also true, i.e. starting with Hamilton equations (3.1.9) and
assuming the solution of p in the form of Eq.(3.1.8), we can show that the to-be-determined
functions S and 1 satisfy the quantum H-J equation (3.1.5) and the Schrodinger equation
(3.1.2), respectively.

Example 3.2.1
As an illustrating example of Theorem 3.2.1, we consider the dynamic systems corresponding to

the quantum states of harmonic oscillator. The Hamiltonian (3.1.6) with V = Kz* /2 has the form

1 1 R d
H(¢7z):%p2+§K 2__m51 wn( ) (325)

The eigenfunction 1, (z) for harmonic oscillator is found to be
U, (z) = CoH,(az)e ™ /%, n=0,1 2, (3.2.4)

where a =~+mk /h and H, isthe nth-order Hermite polynomial. The dynamic system associated
with 1), (z) is represented by the following Hamilton equations:

dz _OH(,) _p

= =L, (3.2.7a)
dt ap m
dp OH(1,) d(1. o h d& d
- = =——|=Kz' ———1n¢v, =——V+Q). 3.2.7b
dt ox dx |2 ! 2m da’ n ¢, () dx ( 9 ( )
Substituting Eq.(3.2.7a) into Eq.(3.2.7b) yields,
de’ _ AV dQ (3.2.8)

m-——=
dt* dr  dx
This equation has the form of Newton’s second law, in which the particle is subjected to a quantum
force —d@ /dz in addition to the classical force —dV /dz . Treating p as a function of x, we can
recast dp/dt into the form

dp _dpdz _pdp 1 d 2.

= _ (3.2.9)
dt dzdt mdr 2m da:
Combination of Eq.(3.2.7b) and Eq.(3.2.9) yields
H(z,p) = %p(‘) + V(z)+ @ = E = constant, (3.2.10)
m
where () is the quantum potential present in the state 1),
R’ d’

=———Iny,(2). 3.2.11
Q=) (3211)

Accordingly, we can regard Eq.(3.2.10) as the energy conservation law for one-dimensional quantum
Hamilton system. By substituting the relation

__ip 4 _ _ih dg(2)
p=—ih I (e) = S

from Eq.(3.2.1.8) into Eq.(3.2.10) , it turns out that Eq.(3.2.10) is just the time-independent
Schrodinger equation for harmonic oscillator

(3.2.12)
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B,
2m da’

The equivalence among the Hamilton equations (3.2.7), the energy conservation law (3.2.10) and the
Schrodinger equation (3.2.13) indicates that the wavefunction 1, actually represents a dynamic
system whose behavior obeys the Hamilton equations (3.2.7), as stated in Definition 2.1. O

+(E-V(@)), =0. (3.2.13)

The constant C, in Eq.(3.2.4) has an important role in normalizing the wavefunction 1, , but
as can be seen from Eq.(3.2,12), the dynamic representation of 1, is independent of C,. An
alternative expression of Eq.(3.2.10) may be obtained by replacing 1, with p via the relation
(3.2.12),

Hiz.p)= o + V(@) + 52 L = g, (3:2.14)
2m 2m i dx
which was known as Riccati equation in the mathematical literature. Quantum Hamilton-Jacobi
theory (Leacock and Padgett, 1983; Bhalla, Kapoor, and Panigrahi, 1997), which was developed from
Eq.(3.2.14), permits the exact determination of the bound-state energy levels and the related
eigenfunctions without the necessity of solving the corresponding Schrédinger equation.
The quantum potential ¢ has a close relation to the probability interpretation of standard
quantum mechanics; it explains the underlying reason why some locations are hard to access, while
some are accessible with large probability.

Theorem 3.2.2

The total potential Vi, = @ +V is inversely proportional to the probability density function
™) in the manner that the locations with zero probability are where the total potential approaches
infinity and the locations with maximum probability are where the total potential arrives at its
minimum. Moreover, the locations with maximum probability are just the equilibrium points of the
dynamic system (3.1.9) representing the quantum state 1.
Proof: From the energy conservation law of Eq.(3.2.10), we can express the total potential as

2 2
Vrotar :QH/:E’—Lp2 —E+h—[m] : (3.2.15)
2m 2m\ dz

A succinct expression of quantum Newton equation (3.2.8) then turns out to be
AV _ I i[dlw]z

mx = =——
dz 2m dx\ dz
Since this equation of motion is independent of the constant F, we can choose E =0 as the

reference energy level for Vi, . The magnitude of the total potential barrier now becomes

Vi = h_Z[dlnw]z _ B |dy ) dof’
B DY) 2m P
which states that the height of the total potential barrier is inversely proportional to ™). A spatial
point with large value of ¢y corresponds to the location of low potential barrier and hence large
accessibility to this point. This fact legitimates the use of ™ as the probability measure for a
particle to appear at a specified spatial point. Besides the probability information provided by "y,
the detailed trajectory under the action of Vi, can be found by integrating Eq.(3.2.16) whose first

integration, as has been shown in Theorem 3.2.1, is given by Eq.(3.1.8) and Eq.(3.1.9a):

o _p_ ihdp/de (3.2.18)
da m m Y
The equilibrium point of the above nonlinear system is the position having the property of =10, i.e.,
d /dr = 0, which in turn is the necessary condition that the probability density "¢ achieves its
maximum. O

(3.2.16)

: (3.2.17)

Fig.3.2.1 is an illustration of Theorem 3.2.2 by taking harmonic oscillator as an example. The
total potential Vi.. and the probability density ") are plotted together for quantum states
n =20, 1, 2, and 5. The inverse proportionality between Vi,. and "y is clearly displayed, from
which the positions with zero probability are justified by the presence of infinity potential and the
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positions with the maximum probability are justified by the lowermost points of the potential.

—= 0 —
(a) n 2; (b) n=1
VTotal
— VTotal
7/)07/)0| |1/;1* ¢l|
1. 2 3
X

(c) n=
VTotal Nt <« VTotal
|:|. -
|¢§¢2| -4 |w§¢5|
432 123 4 4 2 24
H *

Fig.3.2.1 The illustration of the inverse proportionality between the probability density |1/)*’(/}|
and the total potential Vi . =V + Q) for harmonic oscillator with quantum states n =0, 1,
2, and 5. The locations with zero probability are where the total potential approaches infinity and

the locations with maximum probability are where the total potential arrives at its minimum.

3.3 Complex Variable and Quantum Operator

Besides the state-dependent property, quantum Hamiltonian mechanics is distinct from classical
Hamiltonian mechanics in the unique feature that the observables appeared in quantum Hamilton
mechanics, such as ¢, p,and H, are in general complex-valued. For instance, if we determine the
momentum p from Eq.(3.1.8) for a given wavefunction ), we should find that p has real
component as well as imaginary component. This complex-valued nature inherits from Schrédinger
equation, which produces the complex-valued wavefunction that, in turn, leads to the complex-valued
quantum Hamiltonian H and quantum potential @ . It is this complex-valued nature that allows us
to derive the correct quantum operator accompanying each quantum observable. In the following, we
first introduce the definition of quantum operator in Hamilton mechanics, and then demonstrate how
the commonly used quantum operators in Cartesian coordinates can be derived from this definition.
Operators in curvilinear coordinates will be considered in the later sections.

Definition 3.3.1
For a quantum observable A evaluated in the quantum state ¢, its associated quantum
operator A is defined via the relation

1 -
A=—Ay. (3.3.1)

(G
Using this definition, we can give a formal proof of the quantization axiom p — —iAV that governs
the critical transition from classical systems to quantum-mechanical systems. ([l

Theorem 3.3.1 (Yang, 2007A)
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The canonical operators (g,p) corresponding to the canonical variables (q,p) are given by
Gg=¢q and p=—ihV , whereas the Hamiltonian operator H corresponding to the quantum
Hamiltonian defined in Eq.(3.1.6) is given by H = —p° /2m +V .

Proof: Rewriting Eq.(3.1.8) in the form of Eq.(3.3.1), we obtain

p=VS=—iVIny = (1/¢)(—ihV)1) . (3.3.2)

The comparison of the above equation with the definition p = (1/v¢)pyy gives p = —ihV. Asfor ¢,
we may express g as q = (1/1)gy) and contrast this with the definition g = (1/1)gy to obtain
4 =¢q . To derive the Hamiltonian operator H from the definition H = (1/v)H1), we need to
express the quantum Hamiltonian H in terms of the wavefunction ¢ . The insertion of
p=—-ihVIny in Eq.(3.1.6) yields

1 . 2 h2 2 ]. —hZ 2
H=—(-ihVIny) ——V'Inyp+V=—|—V +V|9. (3.3.3)
2m 2m P 2m

In comparison with Eq.(3.3.1), Eq.(3.3.3) produces the Hamiltonian operator H=-p /2m+V .0

The canonical momentum operator p derived in Theorem 3.3.1 must not be confused with the
mechanical momentum operator P . In Cartesian coordinates, the mechanical momentum P is
given by P =mg and from Eq.(3.1.9a) we find p = mg = P, which indicates P=p=—ihV in
Cartesian coordinates. However, in curvilinear coordinates, p and P are, in general, different and
the quantization axiom P = —ihV is no longer valid as will be expounded further in later chapters.

Eq.(3.3.2) indicates that defining quantum momentum p = V.S in complex domain is necessary
to result in the correct momentum operator p. A similar but different quantum momentum was
proposed by Bohm (1952) in the form of p, = VSy, where Sy is the phase of the wavefunction
defined by ¢ = Rpe™®/" with Ry and Sp being real functions. If we follow the same procedures
leading to Eq.(3.3.2) but employ the real quantum momentum p, = VSp instead of the complex
momentum p = V.S, we shall find that it is not possible to arrive at the correct momentum operator
p=—ihV.

A natural outcome of defining canonical variables (g, p) in complex domain is the quantization
of action variable, a postulate proposed by Sommerfeld (1915) and Wilson (1915),

T, :fﬁ pdg =nh, n=0,1 2, i=1 2 - N, (3.3.4)
where ¢; is a closed trajectory in the complex ¢; plane obtained from the integration of the
Hamilton equations (3.1.9) and the complex momentum p; is given by Eq.(3.1.8) as
p; = —ihdIny /dq;. To prove the quantization rule (3.3.4), we define the following conformal
mappings from the ¢; complex plane to the i complex plane:

where (q;) is a function of the single complex variable ¢; obtained by fixing other coordinates in
the wavefunction (¢, -, ¢, -,qy)- The function 1), maps a closed path ¢; in the ¢; plane into a
closed path ¢/ in the 1 plane. Counting the number of encirclement of the origin in the 1 plane
by the closed path ¢/ provides us with the quantum number n in Eq.(3.3.4).

Theorem 3.3.2: (Yang, 2006D)

Let ¢; be any closed complex trajectory traced out by the coordinate g¢;. Then the contour
integral defined in Eq.(3.3.4) over the contour ¢; is quantized and the related quantum number n is
equal to the number of encirclement of the origin in the 1) plane by the closed path ¢/ obtained
from ¢; via the mapping ;.

Proof: With the substitution p; = —ihd1In /dq;, the action variable J; becomes

Ji:§pidq{, :E‘f Md(h:z quz:z dln;, (3.3.6)
ci 1Jg¢ ﬁqz 1Jg dql 1J¢f

where in the last equality we have expressed J; in terms of the net change of In); along the closed
path ¢/ . By expressing 1), in a polar form 1 = |¢Zv|e‘0 , we can further simplify J; as
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Jz:ifﬁ d1n|wi|+hfﬁ a6 . (3.3.7)
1 ¢! ¢

The first term in the right-hand side is zero because the net change of Inly;| is zero along any closed
path. The second term is relevant to the net phase change of ; along the closed path ¢/, which
must be an integral multiple of 27 . Therefore, Eq.(3.3.7) is reduced to the expected result

J = h9§ d0 = h(2n7) = nh,

where n is the number of encirclement of the origin in the 1), plane by the closed path ¢/ and
2nm represents the corresponding net phase change. Fig.3.3.1 illustrates the mapping between the
contour ¢; in the complex plane ¢; and the contour ¢/ in the complex 1); plane. Observing the
number of encirclement of the origin by the closed path ¢/ allows us to identify the quantum number
n graphically. O

(a) Trajectory in ¢ plane (b) Zero encirclement of the origin

} Im(q) * Im(y)

Y
los]
Q
=
>

ReSq) D’
D A - F Re(y)
F Contour ¢ isthe
mapping of ¢ into
Contour ¢ traced the ¥ plane.

out by a particle

(c) One encirclement of the origin (d) Two encirclements of the origin
4

A
Imy)

A
Imy)

A/
F/
D’ E’

Fig.3.3.1 Conformal meping of the closed contour ¢ in the ¢ plane into the closed contour ¢’
in the v plane. The contour c¢ is the particle’s trajectory solved from quantum Hamilton
equations of motion and the imagine contour ¢’ is obtained via the transformation ) = ¥(q). As
a representative point ¢(t) traces out the entire contour ¢ in the counterclockwise direction
A—-B—-C—-D—E—F,its image point in the 1 plane traces out the contour ¢’ in the
direction A’ - B’ - C'—= D' — E"— F’. The number n of the counterclockwise encircle-
ments of the origin of the v plane is equal to 0, 1, and 2, respectively, for the case (b), (¢), and (d).

\%

aQ

The quantization rule (3.3.4) is independently valid for any coordinate ¢;(t) that has periodic
motion and thus has closed trajectory in the complex g¢; plane, regardless of whether the whole
quantum system is periodic or not. We shall revisit Theorem 3.3.2 in Chapter 4 for the quantization
of harmonic oscillator and in Chapter 9 for the quantization of hydrogen atom. In Theorem 3.3.1 and
Theorem 3.3.2, we have witnessed the necessity of extending quantum observables such as ¢ and p
to complex domain. It is worth noting that the relation between the complex quantum observable A
and the quantum operator A in Eq.(3.3.1) is in the form of strict equality, but not merely an
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abstract correspondence. In the standard approach, we obtained H by applying the abstract
corresponding principle of replacing the momentum p in the classical Hamiltonian
H . =p / 2m +V with the momentum operator p, but in doing so we could not establish any
equality between H and H,. However, under the framework of quantum Hamiltonian mechanics,
we have a quantum Hamiltonian H in Eq.(3.1.6), which is directly related to H via the equahty

— 1/ W)HY.

For any given observable A defined in quantum Hamilton mechanics, we can identify its
accompanying operator A by using Eq.(3.3.1); conversely, for a given operator B an explicit
expression for its accompanying quantum observable B is found to be B = (1/)By . To familiarize
us with this equivalence, let us consider a textbook example regarding the operator of the angular
momentum L=¢gXp.

Example 3.3.1
In quantum Hamilton mechanics, the expression for L is the same but with ¢ =[z y 2] and

p =[p. p, p.] satisfying the quantum Hamilton equations (3.1.9), instead of the classical Hamilton
equations. Evaluating the z components of L with p given by Eq.(3.1.8), we obtain

holny h Oln —ih| O 0
i 9z i 0y P "0z 0y
Comparing the above equation to the definition L, = (1/ w)]:l,q/) gives L, as:
~ 0 R
L, =—ih|y——2—|=yp. — 2D, 3.3.9
e = —1 [y Fy ay] yp. — 2D, (3.3.9)

where the expressions for p, and p, has been derived in Theorem 3.3.1. We recognize that an
explicit expression of L, in terms of the wavefunction 1 naturally leads to the expression for ﬁT .
The other two components ﬁy =2zp, —xp, and L L = rp, —yp, can be derived in a similar way. [J
There exists a special wavefunction 1/Jn such that Eq.(3.3.1) yields A(p,q)=A, =
1/, )Awn = constant . In such a case, the observable A(p,q) becomes a constant in the state 1, .
In conjunction with 1, , a remarkable link can be established between the conservation law in
quantum Hamilton mechanics and the concept of stationary observable in quantum mechanics.

Lemma 3.3.1

A quantum observable A(p,q) is stationary in the quantum state 1, , if and only if A(p,q) is
conservative along any phase-space trajectory (q(t),p(t)) determined from Egs.(3.1.9) with the
Hamiltonian H induced by 1), ; furthermore, this conserved value of A(p,q) is just equal to the
eigenvalue of A with respect to the eigenfunction 1, .
Proof: In quantum mechanics, an observable A is said to be stationary in the state 1), , if its related
operator A satisfies Aw,, =A,1, , where A, is the eigenvalue of A corresponding to the
eigenfunction ¢, . Now we can apply Eq.(3.3.1) to evaluate A in the state 1), as
Alg,p)= 1/ v,)Av, =1/v,)A, = A, , which states that the value of A(p,q) evaluated in the
state 1), is a constant equal to the eigenvalue A, . According to Definition 3.1, the constancy of
A(qp) in the state 1, amounts to the conservation of A(p,q) along any phase-space trajectory
(q(t), p(t)) determined from Eqgs.(3.1.9) with the Hamiltonian H induced by %), . Conversely, if we
are given that A is a constant A, in the state 1, , then Eq.(3.3.1) implies A = A, = (1/v,)A%,,
i.e., Ay, = A1, , which ensures that A is stationary in 4, . O

As a demonstration of Lemma 2.3.1, we consider A =H and assume that H is stationary in
v, , ie., Huy, =FE,, . If we apply this stationary condition to Eq.(3.3.1), we obtain
H(g,p)=Q1/v,)HY, = (1/v,)E, = E,, showing that the Hamiltonian H(q(t), p(¢)) in Eq.(3.1.6)
is conservative along any phase-space trajectory (q(t), p(t)) in the state 1, . We may confirm the
conservation of H by showing dH /dt =0 in the state ,. Because ¢(t) and p(¢) in the state
1, satisfy the Hamilton equations (3.1.9), we obtain the expected result

dH _0Hdq , OH dp _OH OH OHOH _ (3.3.10)

dt aq dt E dt oq Op Op aq
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Example 3.3.2 (Yang, 2006A)

Continue the discussion of harmonic oscillator in Example 3.2.1 and consider the energy
conservation in the ground state, for which the wavefunction is given by ¢, = C'OJ!'-IO@*‘”2 . Inserting
1y into  Eq.(3.2.11) and Eq.(3.2.12) yields, respectively, the quantum potential
Q=hw/2=(h/2)K/m and the quantum momentum p = ihax . The total energy in the ground
state is then found to be a constant equal to

2
1 h
=i lkp po=— L 21:2—1— gz 0w (3.3.11)
2m 2 2m 2 2
where E, = hiw /2 is just the eigenvalue corresponding to 1/10. By a similar way, we can show in the
n'™ eigenstate 1), , the total energy H is a constant equal to the eigenvalue corresponding to 1, ,

ie, H=(n+1/2hw =E,. O

On the other hand, when ) is not an eigenfunction of A, we have Alg,p)=(1/ 1/))A’¢
= constant with its value being varying with (q(¢), p(t)). In such a case, quantum mechanics says
that A is uncertain in the state ¢ and suggests adopting )™ as the probability density function
to extract the statistical properties of A . Quantum Hamilton mechanics provides us with an
alternative way to evaluate a nonstationary observable; we may employ the expression
A(g,p)=(1/¢¥)Ay to explicitly trace the variation of A(q(t),p(t)) along any phase-space
trajectory (g(t), p(t)) in the dynamic system (3.1.9) prescribed by .

The equivalence established in Lemma 3.3.1 can be elucidated more concisely in terms of the
equality (not merely a correspondence) between the commutator defined in quantum mechanics and
the Poisson bracket defined in Hamilton mechanics. Given two operators A and B their
commutator is defined as [4, lAﬂ = AB— BA. The accompanying observables A and B evaluated
in the state 1 are given, respectively, as A(g, p) = (1/¢¥)Ay and B(q,p)= (l/w)Bw according to
Definition 3.3.1. Having obtained A(g, p) and B(q, p), we can evaluate the Poisson bracket of A
and B in a usual way:

{A7B}_Z%8—B—%8—B. (3.3.12)

Lemma 3.3.2 R
If an observable A(q, p) is stationary in the eigenfunction ¢ of H, then

{AH} = i[ﬁ, Hjp=0. (3.3.13)

Proof: For the given condition, we have Ij Y= E,;) and Aw = A, , which yields ?H/;h/)
= HAp=A,E,; ) and hence [A H]p = (AH — HA)p = 0. On the other hand, evaluating A in the
state 1 results in A(q,p)=(1/V)AYy=(1/¢¥)Axp = A, . This means that A(q(t),p(t)) is
conservative along any phase-space trajectory (q(t), p(t)) in the state . From the viewpoint of
Hamilton mechanics, the conservation of A(q(t), p(t)) requires
OA 0A OA OH OA OH
ﬁm<><» 0 ZLM%+GMH D3 el e

where ¢(t) and p(t) satisfy the Hamilton equations (3.2.1.9) specified by . The above equation
amounts to {A,H} = 0 which, together with [A, HJ) =0, gives Eq.(3.3.13). O

_ Wesay that A and H satisfying Eq.(3.3.13) are compatible with each other. For two operators
A and B that are incompatible, their commutator and Poisson bracket are both nonzero, but useful
relation between {A,B} and [4,B] still exists. One typical example comes from the case of & and
P, , which have commutator [Z,p,] =ik and Poisson bracket {z,p,} =1.Expressing them in a form
analogous to Eq.(3.3.13), we have

mm%}=i@mw:m. (3.3.14)

o~

This suggests an identity that the operator corresponding to the observable ih{4, B} is [ ,Bl, 1
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ih{A, B} = i[ﬁ, Bl (3.3.15)

This relation does hold for most commonly used quantum operators. The following examples cite two
of them.

Example 3.3.3
Given the two observables A =L, = yp, —2p, and B = L, = zp, — ap, , we have their Poisson
bracket as {L,,L,} = xp, — yp, = L.; on the other hand, the commutator of the associated operators

L, and L, is known to be [LI, y] = inL. . Accordmgly, we have
i[zm,zm} = E(ihiz)w = ih[a szw} =ihlL, =ih{L,,L,}, (3.3.16)
which satisfies the identity (3.3.15). O

Example 3.3.4
Consider A=H and B=uz, and their commutator [H,z]=(—ih/m)p,. The observable
related to [H,Z] is found from the relation

1 ih ih
S S P 3.3.17
e =-2{250)- -2, 3.317)
This observable is to be linked to the Poisson bracket {H,z} with H given by Eq.(3.1.6),
{H,z} = _oHor 1, (3.3.18)
Jp, Oz m
The combination of Eq.(3.3.17) and Eq.(3.3.18) yields
ih{H,z} = i[ﬁ, W, (3.3.19)
which again is a special case of Eq.(3.3.15). O

3.4 Orbital and Spin Angular Momentum

The above discussions on quantum Hamilton mechanics and the related quantum problems are all
limited to Cartesian coordinates. In this section, we shall continue to demonstrate how quantum
operators can be derived directly in spherical coordinates under the framework of Hamilton mechanics.
According to the definition of the Quantum Hamiltonian H in Eq.(3.1.6), we first have to express
p-p and V.p in spherical coordinates (r,0,¢) as

2 2
2, Do by
p=p L 3.4.1a
pp=r > r’sin’ 6 ( )
1 0 0 ( ps J
V-p= . sin @) 4 0 —|——[
P r?sin@|or (r Pr sin ) a0 5 (P sinf) 0¢ \sin 6
5 5 5 (3.4.1b)
1 . . Dr Do 1 dps
= 2rp, sin 0 + p, cos § + r* sin @ —— + sin  —— + ——
r? sin P bo or 90  sin@ 9¢ |

Before evaluating dp, /0r, Opy /00 ,and Ops /0¢ , we need to express p,, py,and p, asexplicit
functions of r, 6, and ¢. These explicit expressions are afforded by Eq.(3.1.8) as

g =25yl 05 0y 0 05 0y (3.4.2)
ar or a0 a0 Y ¢

where (r,0,¢) is the given wavefunction. By applying Eq.(3.4.2) to the differentiations involved in
Eq.(3.4.1b), the quantum Hamiltonian H defined in Eq.(3.1.6) becomes

1 (2 +E82lnw] 1 i 0% In

£+ =
P o

h
H=—p’+=|=p, ;
p+i rp or? +2m7”2 p0+

2m
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1 , 0% Iny 1 ., I
—5—|ps — N V(r,0,0) =—F +——=+V. 3.4.3
sin’ 9[ ¢ ] TVr6.9) 2m * 7t ( )

_|_
2mr

It can be seen that the Hamiltonian H is uniquely determined by the given wavefunction (r,0,¢).
The following theorem gives the dynamic representation of ¢ in spherical coordinates.

Theorem 3.4.1 (Yang, 2006D)
A quantum state (r,0,¢), expressed in spherical coordinates, is a dynamic system whose
behavior obeys the following Hamilton equations:

P h@ln@/) RL 4 h dlnty K coth . h Olny

. . ? - . .
im Or imr imr® 00 i 2mr’ imr?sin® @ 9¢

(3.4.4)

Proof: The dynamic representation of the state 1) in spherical coordinates can be derived from
Eq.(3.1.9a) with H given by Eq.(3.4.3):
LOH _po By OH _p  heotd o OH

5 prm— prm— . 3.4-5
¢ dp, mr’sin® 0 ( )

ap, m imr’ dpy  mr®  i2mr

On deriving the above Hamilton equations, the canonical variables ¢ = (r,0,¢) and p = (p,, s, Dy)
must be regarded as independent variables in the quantum Hamiltonian H , as in classical Hamilton
mechanics. The adjoin Hamilton equations p =—90H /dq from Eq.(3.1.9b) are redundant, since,
according to Theorem 3.2.1, the solution for p is already given by Eq.(3.4.2), as long as ¢ is a
solution of the Schrodinger equation. By substituting Eq.(3.4.2) into Egs.(3.4.5), we obtain the
dynamic representation of 1 as in Eqs.(3.4.4). O

In comparison with their classical counterparts, the mechanical momenta P’ and I in
quantum Hamiltonian (3.4.3) contain additional quantum correction terms:

2
Pf—pzﬂ[zprﬂa 1“;”], (3.4.63)
ilr i Or
h i 0° Inv I 0 Inv
I =p;+— t0+— - LI=pi—-h , 3.4.6b
bo [p v eo o | sin0 9¢° (3.4.6b)

where the terms involving Planck constant stem from quantum correction. The corresponding
operators for P?, I?, and L} can be identified by expressing Eqs.(3.4.6) in the form of Eq.(3.3.1).

Theorem 3.4.2 (Yang, 2006D)
The momentum operators P., L, and L. corresponding to the observables P., I*, and L,
defined in Eqs.(3.4.6) are given by

2 2
P, h[a +l] g a—2+cot9i+ L 62 , L.= ho (3.4.7)
or 00 90 sin®6 0¢ i 8¢
in terms of which the spherical Hamiltonian operator can be expressed as
F="LP 4+ i yv. (3.4.8)
2m 2mr

Proof: Substituting p, = 95 /9r = —ihd(In)/dr from Eq.(3.4.2) into Eq.(3.4.6a) yields
R (20 | 0 Lia(o  1)[n(o 1
re-Li sl e e
Y \r dr  Or 0 or or
Comparing the above equation to the definition P> = (1/ 1[))P21Z) gives the desired expression for P,
the associated operator for the linear momentum in the r direction. Similarly, The expression of

Eq.(3.4.6b) in terms of the wavefunction ¢ by wusing p; =—1hd(Inv)/00 and
Py = —ihd(Inv) / 0¢ gives rise to

= — & 0 1 & 2 h 0
U= " [802+C S 5 0 ]1/), Lz—w[18¢][18¢]w, (3.4.9)

from which the definitions of I’ = (1/ w)ﬁzw and I =(1/ ’(/J)Lzl/) yield the expressions for I[?, and
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iz. We thus have obtained the operators ]3T , I? , and ﬁz directly from their associated observables
defined in quantum Hamilton mechanics without using quantization axiom. In the same way, we can
obtain the Hamiltonian operator H by writing Eq.(3.2.4.3) in the form of H = (1/¢)H1y as

120 9 1[0 9 10
~Tamlror o o T e o)UY
m|r or T T sin 10) (3.4.10)
_l[Lﬁf S +V]zp
P \2m 2mr
from which H reads as in Eq.(3.4.8). O

It seems that H may be obtained by simply applying the quantization axiom to the classical
Hamiltonian H = p? /2m + L’/ (2mr)+V , but it is noted that p, should be replaced by the
mechanical momentum operator P. in Eq.(3.4.7) instead of the canonical momentum operator
P, = —ihd / Or. This situation is what we had encountered in standard quantum mechanics that the
quantization axiom p — —iAV cannot be applied directly to Spherical coordinates.

o~

In case of central-force field V =V(r), we have [L, H] = [23,1{ ]= 0, which implies that the
observables I’ and I’ are stationary in an eigenstate 1 of H . From Lemma 2.3.1, it means that
I! and L. are conservative along any phase-space trajectory (g(t),p(t)) determined from
Eqs.(3.4.4). Since we have already derived the expressions for I! and I’, we can verify their
conservation by simply showing dI’ /dt = dI> /dt = 0. With the property that the wavefunction 1)
has a separable solution (r,0,¢$) = R(r)©(0)®(¢) for central-force problem and with the expressions

for H, I’ and L. in Eq.(3.4.3) and Eq.(3.4.6b), we obtain readily the expected results
2 2 2 2 2 2
sz:{szH}zaLza_H_aLza_H:()’ %Z{L27H}:8_L8_H_6_L8_H_O

o0 dp, Op, 00

As Lemma 3.3.1 indicates, the conserved values for H, I! and I’ in the state 1) are just the
eigenvalues of H , I? ,and I’ respectively. This property is reflected in the relations of H Y= Hy,
Iy =IMp, and [P = [9, as expressed in Eq.(3.4.10) and Eq.(3.4.9).

Given a quantum state (r,0,¢), we determine its dynamical representation from Eqgs.(3.4.4); on
the other hand, 1" also gives us the probability of the particle’s spatial distribution. Consequently,
there exists close relation between these two different descriptions of ).

Theorem 3.4.3

The stable equilibrium radial position predicated from the dynamic representation of 1 in
Egs.(3.4.4) is identical to the position with the maximum radial probability P(r) = 47r’R*(r)R(r)
determined from (r,0,¢) = R(r)©(6)®(¢); or stated mathematically,

dr d
— =0 —P(r)=0. 3.4.11
7 & P ( )
Proof:
Using ¢(r,0,¢) = R(r)0(0)®(¢), we may rewrite Eq.(3.4.4a) as
F= LR, (3.4.12)
im dr

Hence, the equilibrium position for r is found from the condition 7 =d(ln(rR))/dr =0, ie.,
d(rR)/dr =0. On the other hand, the radial probability function has the expression P(r)=
4rr* R*(r)R(r) = 4n(rR(r))’ by noting that R(r) is a real function of r for central- force problems.
Accordingly, the maximum radial probability occurs at the location of dP/dr=d(rR)/dr=0,
which is just the condition of 7 =20. O

Example 3.4.1 (Yang, 2005A)

For hydrogen atom at ground state, we have R(r) =e /™ with ay, = 4meoh® /(me?) being the
Bohr radius and ©(f) = ®(¢) =1. Substituting this wavefunction into Egs.(3.4.4) yields the
equations of motion for the ground-state electron as:
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dp _21=p dn x4 _

2

dr i p = dr P dr

= , %y =cosf (3.4.13)
where p =r/a, is the dimensionless radial distance and 7 = th /(2ma]) is the dimensionless time.
Eq.(3.4.13) shows that the ground-state hydrogen atom has an equilibrium radial position 7, at the
Bohr radius ay, i.e., p =1.Meanwhile, the radial probability function is given by P(r) = 47rr2R(r’)2
= 4nr?e /% that yields a maximum value at 7, = a, by letting dP(r)/dr = 0. Therefore, we

have 7, = fp = ag - (|

It is not surprising that the probability of finding a particle at the stable equilibrium position has
a maximum value, since there is always a restoring force acting on the particle toward the stable
equilibrium position, and once the particle reaches the stable equilibrium position, it will remain there
as long as no disturbance is applied. However, Eq.(3.4.11) alone cannot tell us directly the stability of
the equilibrium points. The information of the force action around the equilibrium points is required
to judge their stability. The force information is provided by the total potential Viya = Q(1(q)) +V
with Q(¢(q)) being the quantum potential determined from Eq.(3.1.7). With the help of Eq.(3.4.4),
the Hamiltonian in Eq.(3.4.3) can be recast into the following form

H = %[72 + (ré)Z + (r¢ sin 6)2] + VTotal(ra 61 ¢) =k ’ (3414)

where the total potential is expressed in terms of the wavefunction v as

h? ) R (0*Iny 1 9% Iny 1 9*lny
Viotal = — (4 4+ cot™ ) — — —

foul 8mr2( ) om | or 00’ rsin® 0 0¢°
When applied to atomic models, the total potential Vg, exhibits the observed atomic shell

structure.

+V(r).  (3.4.15)

Example 3.4.2 (Yang, 2005A, 2006C)

Considering hydrogen atom, we have wave function ), (,0,¢) = R, (r)O, (6)®,,(¢), where
R,(r) is expressed in terms of the Laguerre polynomial L) (p) as Ry(p)=
(2,0/71)1 PRA (2p/n) ., p=r/ay, neN; O,/(0) is expressed in terms of the associated
Legendre polynomial P.(z) as O, (0) = B™(cosf), 1=0,1, 2,---, n—1, and @, (¢)= eme
m; =0, +£1, £2,.--, +1[. The total potential Vi ., is state-dependent, and the Viy,, relating to
Yo, 1S denoted by V,;,, as

= n? 2 |1 d’1 1 d*In®,, (¢
Viim = Vrota /| m— | = ——+ —2(4 + cot? 0) —M ——ZD—;’() , (3.4.16)
2mayg 4p dp o do
where the first term V = —2/p is the dimensionless Coulomb potential and the remaining terms in

Vi  constitute the quantum potential @ . The shell structure observed in hydrogen atom is
actually caused by Vum, , and the quantum force derived from V. provides the necessary driving
force to maintain the electron within the shell. Two typical examples Vi and Vo are considered
here, which are given by

— 2 4 t> 0 4 4p —18)°

Vioo(p,0) = —=+ + C(; -— 2( p ) o (3.4.17)
P 4p 20" —18p +27  (2p” —18p +27)

— 2 12+ 4tan’d t* 0 1

Vao(p,0) = —= 4 =2t 9ot U, - (3.4.18)
p 4p (p—6)

Vo has three layers distributed in the radial direction and V30 has four layers with two of them in
the radial direction and the other two in the azimuth direction, as shown in Fig.3.4.1 and Fig.3.4.2
According to the definition of Vo, in Eq.(3.4.16), the radial layers are separated by the infinite
potential barriers located at the points:

p=0, and R,(p)= (2p/n)l PRAAd ard (2p/n)=0. (3.4.19)

For a given value of n, there are n —1 different values of p satisfying Eq.(3.4.19), and hence at
most n shells can be divided by these values of p, when [ =0. In the case of n=3, [ =0,
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Eq.(3.4.19) gives p(2p” —18p +27) = 0, which can also be obtained directly from the denominator of
Vo in Eq.(3.4.17). The three layers of Van are then located, respectively, in the ranges of
0<p<(9-33)/2, (9-3V3)/2<p<(9+3V3)/2, and p>(9+3v3)/2, as is shown in
Fig.3.4.1 for a 3D surface plot. From probability consideration, the probability that the electron
appears at the boundary of the layer 1is zero, since the radial probability density
P, (p) = 4np® |Rn, (,0)|2 is identical to zero at the layer boundary determined from Eq.(3.4.19).

The shell structure of Vo is distributed in the both radial and azimuth directions. The number
and the separation of the azimuth shells are determined by the roots of O, (z). From Eq.(3.4.16),
the potential approaches infinity at the following azimuth angle:

A
Vot (05 6)

First Shell

Third Shell

Fig.3.4.1 The triple-shell structure of the total potential VTotal( ,0) for the quantum state n =3,
I'=m; =0, showing that the potential approaches infinity at the shell bound%ries where the
electron cannot reach and the probability density functlon P, (p) = 4mp |R | is completely
zero. The shell boundary locates at the root of p(2p —18p +27) =0, and thrcc layers are then

formed, respectively, in the ranges of 0< p < (9—3v3)/2, (9— 3x/—)/2 <p<(9+3V3)/2, and
0>(9+33)/2.

N Jml
29 =1, Op,(z)=(1—z)"" T Py(z) =0, (3.4.20)
0

where z, = cosf . For a given quantum number [, the number of azimuth shells is { —|m| +1, and
the maximum number is [+ 1 in the case of m; = 0. Accordingly, V3o has two azimuth shells with
boundaries at zp =1 and Oj(2z9) =2 =0, 1e.,at § =0 and 6 =« /2. On the other hand, the
number of radial shells of Vo is equal to n —[ =2 with inner shell in the range of 0 < p <6 and
outer shell in the range of p > 6, as shown in Fig.3.4.2. Combining together the radial and azimuth
shells, we have totally four shells with each containing one equilibrium point: (1) first inner shell
occupying the region of 0<p <6, and 0< 0 <7/2 with (pey,0e) = (3,cos™"/2/3), (2) second
inner shell occupying the region of 0<p<6 , and 7/2<0<7 Wwith (pe,beq) =
(3,7 —cos' 2/3), (3) first outer shell occupying the region of p>6, and 0<6 <7/2 with
(Pegs 0oq) = (12,cos ™" 4/2/3) , and (4) second outer shell occupying the region of p>6, and
m/2<60 <7 with (peq,ﬁcq) (12,7 —cos ' \/2/3). A three-dimensional illustration of the four
shells of V3o is shown in Fig.3.4.2. By evaluating the radial probability density function
P, (p) = 4np |Rn, |2, it can be checked that the maximum value of P,(p) just occurs at the
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equilibrium points (peq, e, ) s i-e., the lowermost point in each subshell, as proved in Theorem 3.4.3.
O
With given Vi, the quantum forces in the three directions can be determined, respectively, as
Jr =—=0Vrg /O, Jy = —0Vigm /00 and f, = —0 Vygpa / 0¢ . These quantum forces together with

the Coulomb force establish the stable configurations for atomic structure, as will be discussed in
Chapter 5.

A

Vo (£,6)

Fitst inner shell

Second inner shell

Second outer shell

Fig.3.4.2 The quadruple-layer structure of the total potential V310(p,6), showing that the inner and
outer layers are respectively divided into two sub-layers along the azimuth direction with ranges of
0<fO<7/2 and 7/2 <6 < m. Totally four shells are formed with each containing one equilibrium
point: (1) first inner shell occupying the region of 0<p<6 , and 0<60<7w/2 with
(PeqsOeq) = (3, cos ! 2/3) , (2) second inner shell occupying the region of 0<p <6 , and
7/2<0<m with (peq,0eq)= (3,7r—c037l 2/3), (3) first outer shell occupying the region of
p>6,and 0<60<7/2 with (peq,leq) = (12, cos ! jQ_/LZS) , and 34) second outer shell occupying the
region of p>6,and 7/2<0<m with (peq,beq) = (12,m —cos ' [2/3).

It is well known that the angular momentum [’ defined in Eq.(3.4.9) involves only orbit motion.
By contrast, the angular momentum F; = mr*0 derived in Eq.(3.4.5b) contains both spin and orbit
motions. The corresponding local angular momentum F, can be found from the relation (3.4.5b) or
Eq.(3.4.4b) as

B = mr0 :zlﬁ_w_i_zcotﬂ
i ol i 2
where Iy is the 6 -component orbital angular momentum, and S is the local spin angular
momentum. It can be seen that the local spin S = h /(2i)cot# is independent of the wavefunction
1 and thus also independent of the applied potential V. Like the proof of the quantization of action
variable mentioned in Theorem 3.3.2, the quantization of the mean value of L, can be determined
from the contour integral over a closed path ¢, in the 6 complex plane as
71
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(L0>:i9§ Lod9=i. lﬁ_wda:i l%gzi d(In 1)
2 J, 2mi J e, ) 00 2mi J o, do 2mi J e, (3.4.22)

:hnﬂa Ty :Oa L 2a 37

where 1,(#) is a function of the single variable & obtained from (r,0,¢) by treating r and ¢
as constants. The function 1, maps the closed path ¢, in the complex 6 plane into a closed path
¢, in the complex 1)y plane, and the quantum number n, is the number of encirclement of the

origin in the 1, plane by the closed path c¢,. Analogously, we have the quantization of the
¢ -component orbital angular momentum as

(L@:i lal’m: hing, n,=0,1, 2 3, ---. (3.4.23)
‘ 21 ¢y ’LZ) ad)
We now turn the attention to the spin quantization. Using Eq.(3.4.21), the mean local spin is given by
(5) = ifﬁ Sdo=" o coto do. (3.4.24)
2m J ¢, 4
Noting the residue of cotf atits poles 8 = nw, n € Z ,is equal to 1, we have from the residue theory
(S) = i,(2m’n9) = Ens, n,=20,1 2 3, -, (3.4.25)
47 2

where n, is the number of zero
of sinf , ie., nm, neZ , A
enclosed by the contour ¢y
and also note that since sin@
is an analytical function, the
number of pole of sinf
enclosed by ¢y is always zero.

It is worth noting that upon x

arriving at the result (3.4.25), —2m

we do not specify the type of

particles, neither the type of the

applied potential. The spin Fig.3.4.3 The quantization of spin is characterized by the number of
quantization rule (3.4.25) says nm, n € Z, enclosed by the § complex trajectories. In the figure, the
that the value of the mean spin contour C; encloses no point of n7, indicating that the particle

tracing the contour C|, is a spinless particle, while the contour C|
encloses one point of nm, indicating that the particle tracing C| is a
spin-1/2 particle. Similarly, the particles tracing C, and C5 are
spin-1 and spin-3/2 particles, respectively.

is only allowed to be integer
multiple of h/2; furthermore,
it  provides us with a
geometrical method to identify
the spin of a given particle by
inspecting any of its 6 trajectory ¢y and counting the number of the point nm, n € Z within it.
The 6 trajectory can be found by integrating Eqgs.(3.4.4).

Referring to the demonstration in Fig.3.4.3, the contour C, encloses no point of n7 , indicating
that the particle tracing the contour C|, is spinless, while the contour C; encloses one point of nr,
indicating that the particle tracing C; is a spin-1/2 particle. Similarly, the particles tracing C, and
C; are spin-1 and spin-3/2 particles, respectively. The practical computation of the electron
trajectory in the hydrogen atom using the Hamilton equations of motion (3.4.4) shows that the
related trajectory belongs to the type of C; and thus confirms an electron as being a spin-1/2
particle.

Corresponding to the canonical momenta p,, ps, and p,, we can find their associated
canonical operators p,, p,,and p, from Eq.(3.4.2) :

_h10Y _h 10y _h10Y

, ROy, =222 3.4.26
ivor T ves T 06 (3.4.26)

T

and from the definition (3.3.1)
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1 1 1
pr = _i)rwa Py = _i) wa Py = _i) w (3427)
v BT T

The comparison of Eq.(3.4.26) with Eq.(3.4.27) gives
. _h 8 . h O . h o
o T e T i 0e
The canonical momenta p,, p,, and p¢ must not be confused with the mechanical momenta
P. =7, P, =m0, and P, =mr 2¢sin” 0 , which can be found from Eqs.(3.4.4) as

(3.4.28)

. 1(ho |1 1
P.=mr= 1/J{Z B ]1/} = ¢P¢’(/J (3.4.29a)
_ a5 1(h O 0 cot9 _1
By =mro= 1/1[1 50 5 ]1/1 " Poyp (3.4.29D)
P, = mr*fsin® 0 = E[ﬁ%]w = ;ﬁw (3.4.29¢)

from the which the mechanical momentum operators can be identified as
h[a 1]’ ]/59:@[8 cot0]7 _/P\qﬁ h 0

ar 1 1%4— 2 18425'

It can be seen that unlike Cartesian coordinates, in spherical coordinates the canonlcal momentum
operators P, Dy, and p, are distinct from the mechanical momentum operators PA7 , Pe, and
Py in the additional terms —ih/r and (—ifi/2)cotf. It can be seen that P. and Py = L. are
identical to those derived in Eq.(3.4.7), where they have been obtained alternatively from the
expressions for P, and p,. Here we obtain the same R and P¢ directly from the Hamilton
equations of motion (3.4.4).

The combination of Pg and P¢ in Eq.(3.4.30) affords us the information of total angular
momentum.

P, = (3.4.30)

Theorem 3.4.4
In spherical coordinates, the total angular momentum operator is given by

2w Po o, (/2

in” @ L +®/2r+ sin® 0

where I? is the usual orbit angular momentum operator defined in Eq.(6.7).
Proof: The combination of the 6#-component and the ¢-component angular momenta gives the total
angular momentum vector as

(3.4.31)

J=F

qu = Pgeg + Lze qu s (3432)

sin 6 sin

which has the operator representation:

j:ﬁ(ﬂee+ _Z
sin 6

e, (3.4.33)

where e, and e, are, respectively, the unit vectors in the 6 and ¢ directions. Using the
definitions of Pe and P¢ = L. from Eq.(3.4.30), the operation represented by J? becomes

To=0 -Tw= sz/;+

Peﬂl} ; (3.4.34)

where ]3921/; and wa are evaluated, respectively, as

PM/J Pe(PM/J) [h][aﬁ-ﬂ]{a—#} cot 6

00 2 80+ 2 1/}]

) ) (3.4.35a)
= —h? [8 v + cot 6 815] \(71/2)2 —l——(h /22)

06> sin” 6 v
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2
pry—|RO|hOY)_ 0 (3.4.35)
‘ i0g)li 0 0¢
The substitution of ]392 and ]302 into Eq.(3.4.34) gives rise to the representation of J? as

2 + AL

sin® 0

- o 0 1 o
J?=—n"|—5 +cot— +—— + : 3.4.36
[802 06  sin® 6 8(;52] ( )
where the first three terms in J* is the orbital angular momentum operator I already derived in
Eq.(3.4.7) and the remaining two terms are due to spin motion O

3.5 Complex Hamiltonian and Complex Energy

Since in complex mechanics, position and momentum are defined in a complex domain, it is
natural to expect that energy in complex mechanics is also defined in a complex sense. Let us begin
this discussion with the harmonic oscillator in Example 3.2.1. Classical Hamiltonian for a harmonic
oscillator in dimensionless form is given by

S 1
HY =2 (ol + i), (3.5.1)

and its related Hamiltonian operator reads

P 1,\2 1,\2 h2 82 1 2
Hi=-pt4-pt=_1t 9 42,2 3.5.2
LTy T 2 92 2" (3:52)

Solving the eigenvalue problem of Hip = Ev, we can find the eigenvalue and eigenfunction as
G = CoH,(2)e 2 B, =n+1/2, n=0,12 - (3.5.3)

It can be seen that the eigen energies F;, of a harmonic oscillator are real. Real energy has a deeper
implication in complex mechanics, if we call that the position and momentum are both complex and
consider why energy composed from them is real. According to Eq.(3.2.18), the equation of motion in
the eigen state 1y, is given by

dl’l h 1 d¢71(x1)

= = — 3.5.4a
i T () dn (3:0:42)

Especially for n =0 and n =1, we have

d.I'l .
n=0: —=1ix, 3.5.4b
i (3.5.40)
2
n=1: $_jm-l (3.5.4¢)
dt T

We can see that the momentum p; given by Eq.(3.5.4a) is complex and the position z;(¢) solved
from Eq.(3.5.4a) is also complex. However, the total energy formed from p, and z,(¢f) are real, as
shown in Eq.(3.2.14):
1, 1, 1dIng,(x)
H1(5E1ap1)*2p1 +25E1 2 de12

where p, € C and z;, € C, but FE, is real. Such a situation that complex position and momentum
result in real energy is not an accident. Not every Hamiltonian operator H has real eigenvalues.

In conventional quantum mechanics, one imposes the Hermitian condition H'“* = H'® | where
x represents complex conjugate transpose, to ensure that the Hamiltonian operator H has a real
cigenvalue (real energy). It was pointed out by Bender [1998] that the reality of the eigenvalue of H
is actually due to a weaker condition called PT symmetry. PT represents combined parity reflection P
and time reversal T. The effect of parity reflection P is to make spatial reflections, p — —p and
x — —x, while the effect of time reversal T is to make the replacements p — —p, x — z, and
1 — —i . Consider the following classical Hamiltonian

= El,n =n + 1/27 (355)
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o _1 ,
Hy) = 2 (0 + a5 + i), (3.5.6)

which is neither P symmetric nor T symmetric, but is nevertheless PT symmetric. Hence, H: has
real eigenvalues though it has an imaginary component iz,. From the viewpoint of quantum
mechanics, the complexity of the Hamiltonian in Eq.(3.5.6) is only due to the multiplication by the
imaginary number i, since p, and z, are treated as real variables therein; while in complex
mechanics, p, and z, are complex variables, and the Hamiltonian is complex, regardless of the
appearance of the 4 factor. Consider another classical Hamiltonian

g 1 .
Hy:?g+ﬁ_%+my (3.5.7)

which is not PT symmetric, and the eigenvalue of Hs is complex.

Defining canonical variables (z,p) in a complex plane has a remarkable significance that
Hermitian systems such as Hl(c) , PT-symmetry systems such as HQ(C) , and non-PT-symmetry
systems such as H. éc) , can be unified into a more general class of Hamiltonians whose elements are all
shift-invariant over the complex plane. The eigenfunctions for Hs and Hs can be found as

Gon(1y) = C H, (23 41 ) 2) e @/ /2 (3.5.8a)

¢3,n($3) =C,H, (373 4 i/2 _ 1/2)6*(m3+i/2—1/2)2/2. (3.5.8b)
In terms of the Hermitian eigenfunction 1),, in Eq.(3.5.3), we can express 1, and 1y, as

’(/}2771, (1‘2) = ’(/}I,n (Il) ’(/}3,77, (I3) = ’(/}1,77, (1131)

(3.5.9)

n=mp+i/2 "’ my=z3+i/2-1/2 "

which means that the three eigenfunctions 4/, »,, and )3, can be made identical by linear
coordinate translation over the complex plane. This relation also reflects in their respective intrinsic
complex Hamiltonian:
1 2 . 2 d2
Hy(m) ==|pi + (22 +1/2) —— Iney, ()
2 dflfg

+%, (3.5.10a)

2

) : d
P + (3 "’1/2_1/2)2 _Wlnw.’i,n(mfi)
3

Using the relations (3.5.9) and the definition of H;, we can rewrite Eqs.(3.5.10) as

1
H3($3)25

+i. (3.5.10b)

Hy(m) = Hy ()| +1/8, Hy(zs) = H(2)) +i/4, (3.5.11)

2 =29+i/2 r=r3+i/2-1/2

which shows that there is a constant real energy shift, 1/8, between H,(z,) and H;(x;), and a
constant imaginary energy shift, i/4, between Hj(z;) and H,(z). According to the energy
conservation law (3.5.5), the energy levels for H, and H; in Eqgs.(3.5.11) can be expressed in terms
of F, as

By, =E, +1/8=n+5/8 By, =FE,+i/4=n+1/24i/4, n=012 . (3.512)

The same results can also be obtained by calculating the eigenvalues of Hs _and Hs directly. The
results of Eq.(3.5.12) confirm the prediction that the PT-symmetric system H, has real eigenvalues,
while the non-Pt-symmetric system H; has complex eigenvalues.

In the usual interpretation, z;, z,,and x; areregarded as real variables, and consequently, the
eigenfunction vy, (z;) in Eq.(3.5.3) is regarded as real because z; is real, but the eigenfunctions
Yy, () and 15,(z;) in Egs.(3.5.8) are complex due to the appearance of the imaginary number 1i.
This is the very reason why the distinctions between Hermitian systems, PT-symmetry systems, and
non-PT-symmetry systems can be brought out. The system H, is said to be Hermitian, because
both its eigenfunction /y,(z;) and eigenvalue E,, are real. The eigenfunction 4, (z,) of Hs is
complex, but its eigenvalue FE,, is real as ensured by the PT-symmetric property. The system Hs
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is non-PT-symmetric and both its eigenfunction and eigenvalue are complex However, if we treat =z,
Ty, and 1z as complex variables, the above distinctions between H 1, Hs , and Hs no longer exist,
because now their eigenfunctions are all complex and can be made identical by complex coordinate
translation as indicated in Eq.(3.5.9), and meanwhile their eigenvalues can be made coincident by
constant shift of complex energy as shown in Eq.(3.5.11) and Eq.(3.15.2).

It can be further shown that the eigen-trajectories for Hi , H 2, and Hs are also shift-invariant.
Like Eq.(3.5.4a), the eigen-trajectories for Hs , and Hs are governed by the following equations of
motion:

dﬁ . dlanH(xZ) dIS : dh’l”@[)gn((llg)

— 20 en\T) - AT 0 N¥snlT8) (3.5.13)
where 1y, (z;) and t,(x;) are given by Eqgs.(3.5.8). Especially, for n =0 and n =1 we have
n=0: g ri/2), (e ri/2-1/2), (3.5.14a)
dt dt
i/2f -1 s +i/2-1/2) —1
n=1: %21M7 %:i(xﬁ_l/_ /2) . (3.5.14b)
dt Ty +1i/2 dt r3+i/2—-1/2

In comparison with Eqgs.(3.5.4), it can be seen that the eigen-trajectories z;(t), z,(t), and z3(t)
also obey the shift-invariant properties appearing in Eq.(3.5.9) and Eq.(3.5.11), i.e

Ty(1T)=Ts(T) +1/2, Tu(r)=Ty(1)+i/2-1/2. (3.5.15)

A numerical illustration of this shift-invariant property for ground-state trajectories is shown in
Fig.3.5.1, where we can see that the eigen-trajectory x,(t) is obtained from x,(¢t) by a parallel
translation —i/2, while z3(¢) is obtained from z,(f) by a parallel translation —i/2+4+1/2 as
predicted by Eq.(3.5.15). Similar translational relation between ;(¢) and z,(¢t) can be observed for
the first excited state, as depicted in the left figure of Fig.3.5.1.

15 ]
104 04
Im(%) It x)
o5 05 \
@b
004 oo 4
By =
05 {15
104 -0
15 ——. N ___.-" 5 -
20 T T T T T 20 T T T T T
-3 -0 a5 [alx] s Ix] is 15 -0 .05 oo 1] 10 15 20
Felx) Fex)

Fig.3.5.1. Quantum trajectories z,(t) of harmonic oscillator H, =z} /2+ p; /2 in the ground state
(marked by the blue curves) are concentric circles in the complex plane. The black dotted curves in the
left figure are the quantum trajectories z,(t) for the PT symmetric Hamiltonian
H, = (x) + p} +iz,)/2, which are obtained by a downward shift —0.5i from z,(). The black dotted
curves in the right figure are the quantum trajectories z,(¢) for the non-PT-symmetric Hamiltonian
H, = (2} + p +iz,-z,)/2, which are obtained by a parallel shift 0.5—0.5i from z,(t).

Eq.(3.2.14) shows that a system’s total energy H(z,p) becomes complex when it has complex
eigenvalue F . A system transiting between two real eigenstates may also possess complex energy during
the transition process. To reveal this property, we analyze a harmonic oscillator transiting from the ground
state ¢y (@) =€ * 12 with energy level Ey =1/2 to the first excited state ¢y (z) =2ze” *17 with
energy level E; = 3 /2. The whole transition behavior is described by the following wavefunction
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67&/2671‘13”: t<0
U, t) = {1 —t)e /> +2te™/?, 0<t<1. (3.5.16)
2x€—m2/26—iE1t t Z 1

Inserting Eq.(3.5.16) into Eq.(3.2.18) yields the governing equations for this state transition process

iz t<0
. 2t
=—=jlr—-i————, 0<t<l1. (3.5.17)
dt 2tz —t+1
(2> —1)/z t>1

Complex trajectories in the time range t <0 and ¢ >1 are just the eigen-trajectories for
n=0 and n =1, as shown in Fig.3.5.1 and Fig.3.5.2, respectively. The governing equation in the
time interval 0 <t <1 is a non-autonomous nonlinear differential equation whose solution can only
be found numerically. Connecting the complex trajectories z(t) = zz(t) + iz;(t) for the above three
time ranges offers a continuous manifestation of the entire state transition process from n =0 state
to n =1 state. The total energy FEr.. is observed to evolve continuously from FEr,, = Fy =1/2

to Ergw = By =3/2 via a complex trajectory. The overall time history of FEry.a(f) can be
described by

1/2 t<0
E (t)—p—2+£+Q(:zt)— 16telt) —t+1 0<t<l1 (3.5.18)
e 22ttt 4 1 ’ -
3/2 t>1

Imx) o4
03 1

E!uﬂ

a1 4

-2 e e oo 4

Eex) b — : :
T Mo os 0g 10

-3 -2 -1 o 1 2 3 ER

Fig.3.5.2. The blue curves in the left are the complex quantum trajectories z,(¢) for the harmonic oscillator
H =1 /2+p} /2 inthe n=1 state, showing that the quantum trajectories =,(t) for H, =z + p, +iz,
(black dotted curves) are obtained by a downward translation —0.5i from z,(¢). The right curve illustrates
the energy transition history for a state-transition process starting from the initial state n =0 to the terminal
state n=1.

where the momentum p and the quantum potential @ are determined, respectively, by Eq.(3.2.11)
and Eq.(3.5.16), and the quantum complex trajectory z(t) are solved from Eq.(3.5.17). It can be
seen from Eq.(3.5.18) that the total energy FErpo.(t) is complex-valued due to the complex nature of
z(t). The evolution of Erp.,(f) in the complex plane is demonstrated in the right figure of Fig.3.5.2,
showing that except at 7 =0 and 7 =1, the harmonic oscillator during the transition process does
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have complex total energy.

3.6 Chapter Summary

In summary, under the framework of complex mechanics a quantum operator A is not merely
an abstract mathematic operation; it indeed represents a physical entity A(g,p) in
complex-extended Hamilton mechanics. Knowing the expression for A(g,p) with ¢ and p
satisfying Hamilton equations of motion allows us to deduce A readily. The Hamilton-mechanical
approach to deriving quantum operator has released two limitations encountered in the quantization
axiom p — p =1ihV, i.e., the limitation to Cartesian coordinates and the limitation to observables
having classical counterpart. Under complex spacetime, we have shown that quantum operators can
be derived directly in any coordinate system without transforming back to Cartesian coordinates, and
that angular momentum operator containing spin effect can be derived naturally without assuming
any spin motion in advance.

3.7 Problems

3.1 This problem is designed to guide you step by step to derive the orbital angular momentum
operator L in Eq.(3.4.7) from the Cartesian coordinates. In Theorem 3.4.2, we have derived L
directly in spherical coordinates. By contrast, standard quantum mechanics have to derive L
firstly in Cartesian coordinates, as done in Example 3.3.1

? 1

~ R 0 0
L.=—|lc——y— 3.7.1
i [x ay y@x] ( )

and then to obtain the spherical 22 by the following coordinate transformation:
z = rsin(f)cos(¢), y =rsin(f)sin(¢), z=rcos(d). (3.7.2a)

or inversely,

r=A\z* +y* +2*, 6 =cos" (z/\/xQ +of + 2 ), ¢ =tan ' (y/ ) (3.7.2b)

(a) Express the partial differentiations 0/dz, 0/dy, and 0/dz involved in Eq.(3.7.1) in
termsof r, 8, ¢, 8/0r, 9/90,and 9/0¢. Hint: Use the relations (3.7.2) and apply the
following chain rules:

9 dr o 009 09 0

.= —_ (3.7.3a)
Odr Ox dr 0Ox 00 Oz d¢
0 _r0 000 050, o~
dy Oyodr 0Oydl 0Oy d¢
0 _oro w0 000 _—
0z 0z0r 0z00 0z 0¢
(b) Employ the above result in Eq.(3.7.1) and show
L, =ih [sind)% + cot d cosqﬁ%] (3.7.4Db)
L, =ih —cosgbi—i—cotﬁsingbi L. = —ihi (3.7.4a)
06 0¢ 0¢
(c) Square Eq.(3.7.4) to verify the final expression
S2 a2 a2 a2 1 0 1 0
L =Li+L,+ L. =-n —{' 0—]+——. 3.7.5
v sin0 00" 96) " sin® 6 0 (3.7:5)
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Notice that to square an operator means to repeat the operation twice. For instance,

sz/; L. (Lﬂ/}) [51n¢— + cot 6 cos ¢ ¢][sin¢>% + cot d cosgb%] P

3.2 This problem aims to familiarize you with the quantum Hamilton equations of motion under polar
coordinates.
(a) Express p-p and V-p in polar coordinates (r,¢) and show that the quantum
Hamiltonian (3.1.6) turns out to be

1 h(1 °S 1 h 0*S
H:—pz+f—pr+—2 3 :+— 7|t V()
2m i \r or 2mr i 0 (3.7.6)
I I 0
=—P +——L +V(n,
2m 2mr? (r:9)

In comparison with their classical counterparts, the mechanical momenta P. and L contain
additional quantum correction terms:

h(1 'S h 88
PP=p+—|=p+—5| =0 +-77, 3.7.7
b i \r b or’ Pe 1 8¢>2 ( )
where the terms involving Planck constant stem from quantum correction.
(b) Show that the Hamilton equations 7= 0H /0p, and ¢ = 0H /dp; become

. X h .
p=biy 20 g P
m  2mri mr

(3.7.8)

where the canonical momenta p, and p, are related to the action function S and the
wave function ¢ via

95 _homy 95 _homy
or i or T 0 i o0¢
(c) Starting with Eq.(3.7.7) or Eq.(3.7.8) and referring to the Definition 3.3.1, show that the

mechanical momenta P, =mr and P, :L:mrzé have the following operator
representation:

(3.7.9)

by =

-2 3.7.10
ilor j ( )
(d) Show that the other set of the Hamilton equations p, = —0H /dr and p, = —0H /0¢ is
reduced to the Lagrange equations of motion:

oV _oQ ov._ 099

mit — mrg? = — 5 2mrig + mrid = — 96 99 (3.7.11)
where Q(r,¢) is the quantum potential defined as
B (190lney  0°lney 1 0*Ing
, + +— . 3.7.12
Qr.0) = 2m [r or or’ o 0¢’ ( )

0Q/0r and 0Q/0¢ are the quantum forces in the r and ¢ directions, respectively.

(e) The wave function ¢ in Eq.(3.7.8) is a solution of the Schrédinger equation, which can be
derived from the energy conservation law H = FE = constant with H given by Eq.(3.7.6).
By substituting Eq.(3.7.8) into Eq.(3.7.6), show that the Schrodinger equation in polar
coordinates has the following form:

Py 10y 19 2m
— +—(E-V 3.7.13
87,_2 r a 2 (]5 hZ ( )w ( )
(f) In case of a central-force field V(r,¢) = V(r), Eq.(3.7.13) has a separable solution. Apply the
separation of variable (r,¢) = R(r)®(¢) to Eq (3.7.13) and show that R(r) and ®(¢)

satisfy the following ODEs
d’R 1dR  |2m m;
@’ v dr

2
R=0, a2, mi® =0 (3.7.14)
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(g) The radial function R(r) depends on the applied potential V , while the azimuth function
®(¢p) always possesses the eigen solutions:
P, (p)=e™", m L. (3.7.15)
In the above eigen state ®,, , show that the orbital angular momentum I’ in Eq.(3.7.7) is a
constant, i.e.,
h 9’8
i 0¢*
3.3 There are very few potentials V' for which Eq.(3.7.14a) has an analytical solution R(r). But
without an analytical expression for (r,¢)= R(r)®(¢), the quantum equations of motion in
Eq.(3.7.8) and Eq.(3.7.11) cannot be integrated. This problem is to introduce you a method to
find quantum trajectories without the information of the wavefunction . This method will be
revisited in Section 10.3 regarding the 3-dimensional quantum scattering in Coulomb potential.
(a) For a separable solution (r,¢) = R(r)®(¢), we have
S = —ihlny = —ihIn R(r) + —ih In ®(p) = S,.(r) + Sy (¢)

I =p;+ = mih® = constant . (3.7.16)

and hence

a8  dS, o5 dS,
e
Using the above relations together with the energy conservation H = E in Eq.(3.7.6) and the
angular momentum conservation law (3.7.16), show

Po(9) (3.7.17)

br

dp@_i

dp, i 5 'h’ hop, 2,2 9
= 2mE-V(r)—p - —L— =2 =—(m;h° — p; 3.7.18
o~ om(E V()= p =i =) @71

(b) With the help of Eq.(3.7.18), a set of differential equations now can be developed for the four
canonical variables r, ¢, p.,and p, without the wavefunction

)

. D h ; Py 1 Dy 242 2
r:—-'- R = —, = —— mh — 37193
m  2mri ¢ mr? Ps B mr? ( : p¢) ( )
) 242
] LR (G R e (3.7.19b)
Alm  2mri 7 i

Given the four initial conditions r(0), ¢(0), p.(0), and p,(0), and the two constants E
and my;, Egs.(3.7.19) can be integrate to find the quantum trajectories r(¢), ¢(t), p.(t),
and p,(t) . However, it is noted that the canonical variables in Egs.(3.7.19) are
complex-valued and only the real parts of the four initial conditions can be fixed. Due to the
uncertainties existing in the imaginary parts of the initial conditions, we will encounter
multi-path solutions in Eqgs.(3.7.19).

3.4 As mentioned in Section 3.4, in central-force field V(r,0,¢) =V(r) we have three motion
constants, the conserved total energy E in Eq.(3.4.3), the conserved orbit angular momentum
I’ in Eq.(3.4.6b), and the conserved z-component orbit angular momentum L. in Eq.(3.4.6b).
In this problem, you will learn that these three conservation laws just provide three differential
equations to solve the three separable functions in the wavefunction (r,0,¢) = R(r)©(0)®(¢).
3.5 Let the two motion constants in Eq.(3.4.6b) be denoted as I’ = I(I + 1)i* and L. = m;h*.

Show that Eq.(3.4.6b) yields the following two differential equations to determine ©(f) and

()
2 2
. F— i[sme)@] M4 e (3.7.20)
d¢ Osin 6 do do sin” 0
whose solution can be found readily as
D, (¢) =e™, O, (0) = P"(cosb), (3.7.21)

where P™ is the associate Legendre function. To ensure a bound solution, B™ must be of
polynomial form, which in turn requires the two parameters [ and m; to be the following
integers:
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m=0 12, -, 1, [=01,2 - (3.7.22)

The multiplication Y,"(0,¢) = ©,,,(0)®,,(¢) is called spherical harmonics. List all the
spherical harmonics for [ =0, 1, 2, 3.

(b) By letting the Hamiltonian H in Eq.(3.4.3) be a constant E and incorporating with
Eq.(3.4.6b), show that Eq.(3.4.3) can be recast into a differential equation involving only
R(r):

1d(, dR] om R

S B V) R=11+1)

r? dr[ dr h? ( (r) ( )7"2
Conventionally, we obtained Eq.(3.7.20) and (3.7.23) by solving Schrodinger ’s partial differential
equation with a separable solution (r,0,¢) = R(r)O(6)®(¢). We have seen in this problem that
the separability of Schrédinger equation indeed implies three conservation laws.

3.5 Following this problem, you will learn to solve Eq.(3.7.23) for the one-electron Coulomb potential

2 2
Vir) = — Ze :_KZe K= 1
dmegr r 4me,

(3.7.23)

(3.7.24)

where Ze is the nucleus charge (Z =1 for neutral hydrogen, Z =2 for singly ionized helium).
(a) By writing E = —|E| and defining a new variable,

p=ry8m|E|/h (3.7.25)

show that Eq.(3.7.23) can be reduced to the following dimensionless form

2
AR 2dR o WAL _1)p_ (3.7.26)
dp” pdp

where the parameter o is given by

2 2 2
o= B2 [ B _ gy B B (3.7.27)
n: \20E] 2|E| he

and the parameter « is called fine structure constant.
(b) Search a solution R(p) for Eq.(3.7.26) in the form of

R(p) = G(p)p'e""*, (3.7.28)
and show that G(p) is a solution of
2 — j—
d G(f) + [21 +2 —1] dGlp) | [U l 1]G(p) —0. (3.7.29)
dp p dp p

(c) As a wavefunction, R(p) must be bound, which requires that G(p) be a polynomial. Show
that to this end, the parameter o has to meet the condition

o—l—-1=n,=0, 1 2, (3.7.30)

Condition (3.7.30) restricts the constant o to the discrete values of

c=n=mn,+1+1=1 2 3, (3.7.31)
where n is called the principle quantum number, which must be a positive integer. For a
given principle quantum number n , the quantum number [ has the values

1=0,1 -, n—1 (3.7.32)

(d) Recall that o is related to the energy FE via equation (3.7.27), and then show that the
requirement of (3.7.31) leads to the quantization of E as

272 4 2
m:—[%]%:—@%, n=12 3 - (3.7.33)
2h

n 2 n
With this energy quantization, the dimensionless variable p in Eq.(3.7.25) becomes
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BB
,oNSmIEl 27 (3.7.34)

h nag

(e) Substituting the condition ¢ =n in Eq.(3.7.29), show that the solution G(p) can be
expressed by the associate Laguerre polynomial Li(p) as

G( ) L%LHZl 1( ) l= 0,L -, n=1 n=1 2. (3735)
Inserting Eq.(3.7.35) to Eq.(3.7.28) yields the solution for R(p) as
R(p)éRnl(p):pe /)/ZL%leE (p)ﬂ lZO, la ) n_la n :17 21 (3736)

Tabularize the R, (p) functions for n =1, 2, 3.
(f) Combine the above three functions R, (r), ©,,(0), and @, (¢), and show that the
wavefunction for an one-electron atom can be expressed by

Q/)nlml (7’, 97 Qb) A'mlml Rnl( )@Zm[ ( ) m; (¢) (3737)
_ [£]3/2 (n — [ — 1)' [z r]l o~ (Z/nag) rL21+1 [ﬁ 7’] Ym(a ¢) (3 7 38)
nay 2n[(n + 1)1 " nay o

where A, is a normalization factor making the integration of %"y equal to one.
Tabularize ), (r,0,¢) for the first several quantum numbers and confirm your answer with
the following table.

" : " Wavefunctions ,,,
3/2
1 0 0 '(/}100 = L 2 e*ZT/Gro
VT ag
3/2
1 |2 Zr| 72
2 0 0 e - 2 —Z e 7«/ ay
Unoo N1 [ ao]
3/2
1 |Z 2r 72
2 1 0 =—=|—| —€ /20 cos 6
Yoo N1 ”
3/2
2| 1 | £1 |y, = # 2N 2z gy petio
™ Qg Qg
3/2 2 9
1 A 7 7
3 0 0 1/’300 = m[a_] [27 — 18a—r +2 a: ]le/3a()
0 0 0
3/2
3 1 0 | g0 = \/5 Zz 6 _Zr ﬁeer/Sao cos B
81\/— Qo ay )
L (2)"(, 22
3 1 +1 w?)lj:l = | — 6 — — _€7Z7'/3a0 sin Heiw
81ﬁ 0,0 a’() ao
3/2 2 2
1 Z Z*r
3 2 0 S — eer/?)a” 30082 0_1
Vi 81v6T (ag ay ( )
3/2 9 9
1 Z Z ,
3 2 :l:l ’(/}32i1 = _ _;e*ZT/&J,O Sin@cos eei@
SIﬁ ao aO

2,2
3 2 +2 ¢32i2 = # £ Z_ge*ZT/3ao Sin2 06i2io‘
1627 ( ag ag

3.6 In quantum mechanics, each physical observable is accompanied by an operator. The two basic
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quantum-mechanical operators are those corresponding to position (z,y,2) and momentum
(P2 Py> p.) - One prescription for making the transition from classical to quantum mechanics is to
perform the following replacement:

nnn PP ho hd ho
s Iy - y Y1 %) vy Pys Pz) — oy V) — |75 0 3.7.39
(z,5,2) — (2.9,2), (9 Dy p2) (B, By D) = [Z 52 8y 8z] ( )

where Z is a multiplicative operator defined by zf = zf , and similarly, yf = yf and zf = zf;

7 is the Planck constant and i is the imaginary number ~—1.

(a) By making the above substitution rules, find the corresponding quantum- mechanical
operators L. , Ly , and L. for the followmg components of classical angular momentum:

L, =yp. —zp,, L,=zp, —ap., L =ap, —yp,. (3.7.40)
(b) The commutator [K, E} of two operator A and B is defined by
[A,B]=AB-BA. (3.7.41)
By using the results of (a), show
[L.,L,)=ihL., [Ly,L.]=ihL., [L. L.]=ihL, (3.7.42)

3.7 Continuing Problem 3.6, two operator A and B are said to commute if their commutator is
zero, i.e., [A,B]=0. Consider the following eigenvalue problems:

Ay = Ahs,  Bup = Mgty (3.7.43)
where ¢, and A, are the eigenfunction and eigenvalue of K; while ¢y and A are the

eigenfunction and eigenvalue of B. Show that if A and B are commuting, then they share the
same eigenfunction, i.e., 1, = 1. Hint: [A, B} =0 means AB=BA.
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